Jurnal Teknik Kimia Chempro

Vol. 03, No. 01, Bulan Juni | 2025 ISSN: 3063-8453

Homepage: https://ejurnal.unival-cilegon.ac.id/index.php/chem/index

Optimasi Pembuatan Biogas dari Kotoran Sapi dan Limbah Sayur Pasar Kranggot Cilegon dengan Sekam Padi Sebagai Jaket Digester Anaerobik

Optimization of Biogas Production from Cow Manure and Vegetable Waste of Kranggot Market Cilegon with Rice Husk as Anaerobic Digester Jacket

Muhamad Fachru Rizal*, As'ad, Yulis Sutianingsih, Apriyansyah Program Studi Teknik Kimia, Fakultas Teknik, Universitas Al Khairiyah, Jalan K.H Enggus Arja No 1 Citangkil, Kota Cilegon, 42441, Indonesia

*Email: muhamadfachrurizal@unival.ac.id

Abstrak

Penipisan bahan bakar fosil yang tidak dapat diperbaharui secara progresif meningkatkan emisi gas rumah kaca, yang merupakan efek ekologis yang signifikan. Sumber energi terbarukan, seperti biogas menjadi alternatif untuk mengatasi masalah tersebut. Biogas yang dihasilkan merupakan hasil dari pencernaan anaerob limbah organic seperti limbah sayur dan kotoran sapi. Tujuan dari penelitian ini adalah untuk meningkatkan pengolahan limbah sayur di Pasar Kranggot menjadi biogas dan mengetahui bagaimana sekam padi berfungsi sebgai jaket digester anaerob untuk menghasilkan biogas yang paling efektif. Variasi yang digunakan yaitu (Limbah Sayur: Kotoran Sapi) dengan rasio V1 (100%: 0%), V2 (70%: 30%), V3 (50%: 50%), V4 (30%: 70%), dengan komposisi limbah campuran 65% dan air 30% dari volume digester anaerobik 19 liter dan pemanfaatan sekam padi sebagai jaket digester anaerob. Sekam padi terbukti memiliki pengaruh menjaga suhu optimum dalam proses pembuatan biogas, dibuktikan dengan data hasil pengukuran suhu terhadap variasi substrat yang berada di 31°C dan 32°C.

Kata Kunci: Biogas, Digester Anaerob, Kotoran Sapi, Limbah Sayur, Sekam Padi.

Abstract

The progressive depletion of non-renewable fossil fuels increases greenhouse gas emissions, a significant ecological effect. Renewable energy sources, such as biogas, are an alternative to address the problem. The biogas produced results from anaerobic digestion of organic waste such as vegetable waste and cow dung. The purpose of this research is to improve the processing of vegetable waste in Kranggot Market into biogas and find out how rice husk functions as an anaerobic digester jacket to produce the most effective biogas. The variations used are (Vegetable Waste: Cow Manure) with ratios V1 (100%: 0%), V2 (70%: 30%), V3 (50%: 50%), V4 (30%: 70%), with a mixed waste composition of 65% and 30% water from an anaerobic digester volume of 19 liters and the utilization of rice husks as an anaerobic digester jacket. Rice husk is proven to influence maintaining the optimum temperature in the process of making biogas, as evidenced by the data from temperature measurements of substrate variations at 31°C and 32 °C.

Keywords: Anaerobic Digester, Biogas, Cow Manure, Rice Husk, Vegetable Waste.

Pendahuluan

Beberapa tahun terakhir ini energi merupakan persoalan yang krusial di dunia. Peningkatan permintaan energi yang disebabkan oleh pertumbuhan populasi penduduk dan menipisnya sumber cadangan minyak dunia serta permasalahan emisi dari bahan bakar fosil memberikan tekanan kepada setiap negara untuk segera memproduksi dan menggunakan energi terbarukan. Selain itu, peningkatan harga minyak

dunia hingga mencapai US\$100 per barel. [1]. Menurut data [2] cadangan minyak Indonesia hanya tersisa sekitar 4,17 milliar barel. Apabila tidak ada penemuan baru, cadangan minyak Indonesia dapat habis tahun 2030.

Biogas adalah gas yang dihasilkan oleh aktivitas anaerobic atau fermentasi darai bahan organic diantaranya: kotoran manusia dan hewan, limbah domestic (rumah tangga), sampah biodegradable dalam kondisi anaerobic. Biogas merupakan peluang

besar untuk menghasilkan energi alternatif sehingga mengurangi dampak penggunaan bahan bakar fosil.

Limbah organik, terutama dari sektor pertanian dan pasar tradisional, merupakan masalah lingkungan yang semakin mendesak. Di Indonesia, pasar-pasar tradisional seperti Pasar Kranggot Cilegon menghasilkan volume limbah sayur yang semakin bertambah setiap harinya. Limbah dari Pasar Kranggot jika tidak dikelola dengan baik, dapat menimbulkan pencemaran lingkungan, bau tidak sedap, dan dapat menjadi sarang penyakit. Salah satu solusi untuk mengatasi permasalahan ini adalah melalui pemanfaatan limbah sayur sebagai bahan baku pembuatan biogas. Limbah sayur yang dihasilkan Pasar Kranggot Cilegon memiliki potensi yang besar sebagai bahan baku produksi biogas. Limbah sayur mengandung berbagai zat organik yang dapat diuraikan mikroorganisme.

Berdasarkan studi penelitian yang telah dilakukan (JAR, 2023). Waktu pembentukan biogas dipengaruhi oleh temperatur di dalam digester anaerobik. Suhu optimum untuk pembentukan biogas berkisar antara 25-40°C, sehingga perlu bahan untuk meningkatkan suhu atau menjaga suhu agar tetap pada temperatur optimum, maka digunakanlah. sekam padi sebagai media penghangat/jaket untuk mempertahankan suhu digester anaerobik dan dapat meningkatkan efisiensi mikroorganisme dalam mencerna limbah sayur, sehingga dapat meningkatkan produksi biogas dalam waktu yang tidak terlalu lama. Oleh karena itu penelitian ini bertujuan untuk pemanfaatan limbah sayuran dan sekam padi untuk pembuatan pemanfaatan biogas sebagai pengembangan energi terbarukan di wilayah cilegon.

Teori

Produk utama dari proses fermentasi anaerobik adalah biogas, yang terdiri dari metana (CH₄), karbon dioksida (CO₂), dan sejumlah kecil gas lainnya. Biogas yang dihasilkan dapat dimanfaatkan sebagai sumber energi untuk memasak, penerangan, dan bahkan untuk pembangkit Listrik. Proses produksi biogas memerlukan fermentasi anaerob, di mana spesies bakteri yang berbeda, terutama bakteri metanogenik, mengkatalisis pemecahan bahan organik menjadi gas metana (CH4) dan karbon dioksida (CO₂) [3].

Biogas dari pencernaan anaerobik limbah, pengolahan makanan, hewan dan limbah lainnya biasanya mengandung sekitar 55% sampai 70% CH₄ dan 30% sampai 45% CO₂. Hasil penelitian [4] menunjukkan bahwa Kandungan CO₂ yang tinggi dalam pembentukan biogas, sangat mempengaruhi gas metana yang dihasilkan. Tingginya kadar CO₂, maka akan memperkecil kadar metana. Berikut adalah

reaksi kimia yang terjadi dalam proses pembuatan biogas.

$$\begin{array}{c} \text{Proses Hidrolisa} \ : \\ (C_6H1_0O_5)n+n \ H_2O & \longrightarrow \\ \text{Sellulose} & \text{Glukose} \end{array}$$

 $\begin{array}{ccc} Proses \ Asidogenesis & : \\ C_6H_{12}O_6 & \longrightarrow & 2CH_3CHOHCOOH & \longrightarrow & CH_3COOH \\ Glukose & Asam \ Laktat & Asam \ Asetat \\ \end{array}$

Adapun faktor-faktor yang mempengaruhi pembentukan biogas diantaranya:

Bahan baku: Bahan yang mudah dicerna tidak akan terapung, melainkan akan turun mengendap didasar alat pembuat biogas. Kotoran sapi dan kerbau sangat baik dijadikan bahan baku karena banyak mengandung selulosa [5].

Derajat Keasaman: Hasil penelitian [6] menunjukkan bahwa semakin Netral pH maka semakin tinggi pula kadar CH₄, Sebaliknya kadar CO₂ akan menjadi semakin rendah. Sedangkan pH optimum dicapai pada nilai 7,5. Bakteri akan giat bekerja pada kisaran pH antara 6,8-8. Kisaran pH ini akan memberikan hasil pencernaan yang optimum.

Temperatur Pencernaan: Suhu yang baik untuk proses pembentukan biogas berkisar antara 20-40 °C dan dengan suhu optimum antara 28-30 °C. Dengan demikian harus dijaga agar suhu pembuatan biogas berada pada suhu optimum [5].

Pengadukan Bahan Baku: Bahan isian yang terlalu padat akan mempercepat produksi karena waktu yang dibutuhkan relatif sedikit dibandingkan terlalu encer. Jumlah produksinya pun lebih banyak dibandingkan yang encer. Dari hasil penelitian diperoleh bahwa dengan pengenceran 1:1 lebih baik daripada pengenceran 1:2.

Pengenceran Bahan Baku: Isian dalam pembuatan biogas harus berupa bubur. Bentuk bubur ini dapat diperoleh bila bahan bakunya mempunyai kandungan air yang tinggi. Bahan baku dengan kadar air yang rendah dapat dijadikan berkadar air tinggi dengan menambahkan air kedalamnya menggunakan perbandingan tertentu sesuai dengan kadar bahan kering bahan tersebut. Jika terlalu banyak atau terlalu sedikit menambahkan air maka akan berakibat biogas yang terbentuk tidak optimal [5].

Hubungan antara jumlah karbon dan nitrogen dinyatakan dengan rasio Karbon/Nitrogen (C/N), rasio optimum untuk digester anaerobik berkisar 20-30. Jika C/N terlalu tinggi, nitrogen akan dikonsumsi dengan cepat oleh bakteri metanogen untuk memenuhi kebutuhan pertumbuhannya dan hanya sedikit yang bereaksi dengan karbon, akibatnya gas yang dihasilkannya menjadi rendah. Sebaliknya jika

C/N rendah, nitrogen akan dibebaskan dan berakumulasi dalam bentuk amonia (NH₄) yang dapat meningkatkan pH.

Digester anaerobik adalah sebuah teknologi yang digunakan untuk mengubah limbah organik menjadi biogas melalui proses biologis tanpa adanya oksigen. Berikut adalah informasi tentang prinsip kerja, manfaat, dan varietas digester anaerobik. Adapun tahapan dalam pembentukan biogas, yaitu:

Tahap Hidrolisis: Pembukaan molekul organik kompleks menjadi gula sederhana, asam amino, dan asam lemak [7].

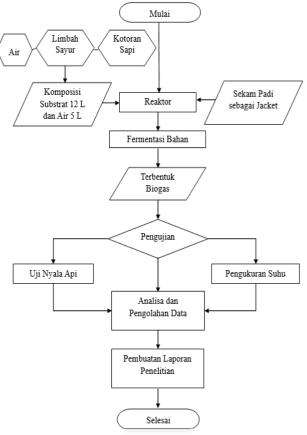
Tahap Asidogenesis: Pemecahan gula dan asam amino menjadi karbon dioksida, hidrogen, amonia, dan asam organik [7].

Tahap Asetogenesis: Konversi asam-asam organik menjadi asam asetat dan karbon dioksida [7]

Tahap Metanogenesis: Konversi asam asetat dan senyawa lainnya menjadi metana dan karbon dioksida [7].


Limbah sayuran yang dihasilkan di Pasar Kranggot Cilegon memiliki potensi yang besar sebagai bahan baku biogas. Limbah sayuran mengandung berbagai zat organik yang dapat diuraikan oleh mikroorganisme. Menurut data dari BPS (Badan Pusat Statistik) pada tahun 2021, total limbah sayuran yang dihasilkan di pasar tradisional di Indonesia mencapai 1,5 juta ton per tahun. Dengan memanfaatkan limbah sayuran ini, tidak hanya dapat mengurangi dampak lingkungan, tetapi juga dapat menghasilkan energi terbarukan yang bermanfaat.

Kotoran sapi merupakan salah satu bahan baku yang umum digunakan dalam produksi biogas. Menurut penelitian yang dilakukan oleh Agustina et al. (2020), kotoran sapi mengandung banyak mikroorganisme yang berperan dalam proses fermentasi anaerobik, sehingga dapat meningkatkan produksi biogas. Kotoran sapi juga kaya akan nitrogen, yang dapat mempercepat proses dekomposisi bahan organik.


Sekam padi adalah limbah hasil penggilingan padi yang terdiri dari lapisan keras yang meliputi kariopsis, dan terdiri dari dua bagian utama yaitu lemma dan palea [8]. Dalam proses penggilingan, sekam padi biasanya dihasilkan sekitar 20-30% dari total berat gabah yang diproses. Mayoritas sekam padi terdiri dari selulosa, hemiselulosa, dan lignin, yang memberikan sifat fisik dan kimia tertentu. Selain itu, sekam padi juga mencakup elemen mineral termasuk K₂O, Na₂O, CaO, MgO, dan Fe₂O₃ dalam jumlah kecil. [9].

Metodologi Penelitian

Prosedur Penelitian Diagram Alir Tahap Persiapan Alat

Gambar 1. Diagram Alir Tahap Persiapan Alat Diagram Alir Tahap Pelaksanaan Penelitian

Gambar 2. Diagram Alir Tahap Pelaksanaan Penelitian

Bahan

- 1. Limbah sayuran
- 2. Kotoran sapi
- 3. Air
- 4. Sekam padi

Alat

Untuk Pembuatan Reaktor Biogas:

- 1. Trash bag
- 2. Galon 19 liter
- 3. Selang
- 4. Valve
- 5. Penutup galon
- 6. Lem
- 7. Tempat penyimpanan biogas

Untuk Analisa:

- 1. Timbangan
- 2. Korek Api
- 3. Panci
- 4. Termometer

Variabel Penelitian

- 1. Variabel tetap: Volume H₂O (Air), Volume reaktor (19 liter)
- 2. Variabel berubah: Massa bahan baku pembuatan biogas
- 3. Variabel terikat: Pengukuran suhu dan uji nyala api

Metode Analisa Data

Pengukuran Suhu

Pengukuran suhu dilakukan menggunakan alat manometer dengan metode pemasangan termometer raksa pada reaktor. Pengukuran temperatur bertujuan untuk memantau kondisi temperatur yang ada didalam reaktor biodigester anaerobik. Pengukuran temperatur dilakukan setiap 5 hari sekali.

Uji Nyala Api

Uji nyala api dilakukan menggunakan jarum suntik sebagai burner yang digunakan untuk keluarnya titik api, dengan cara membuka valve untuk mengalirkan gas yang ada didalam reaktor lalu pada ujung jarum suntik dinyalakan api menggunakan korek api. Uji nyala api bertujuan untuk mengetahui biogas yang dihasilkan apakah mengandung gas metana atau tidak. Uji nyala api dilakukan setiap 5 hari sekali pada hari ke 15 sampai dengan hari ke 30 pembentukan biogas.

Hasil Penelitian

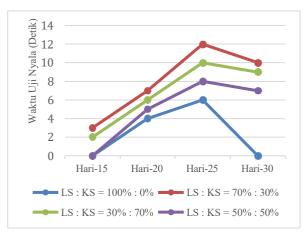
Hasil Pengukuran Kualitas Biogas

Hasil penelitian menunjukkan bahwa kombinasi limbah sayur dari Pasar Kranggot Cilegon dan kotoran sapi dapat menghasilkan gas metana yang dibuktikan dengan pengujian nyala api. Peneliti melakukan uji nyala api setiap 5 hari sekali pada hari ke-15, hari ke-20, hari ke-25, dan hari ke-30. Berikut data hasil analisa yang didapatkan:

Tabel 1. Hasil Pengukuran Kualitas Biogas

Variasi Substrat	Hasil Uji	Warna Nyala Api		
	Hari-15	Tidak Menyala	-	
LS: KS = 100% : 0%	Hari-20	Menyala (4 detik)	Biru Muda	
	Hari-25	Menyala (6 detik)	Biru Muda	
	Hari-30	Tidak Menyala	-	
LS: KS = 70% : 30%	Hari-15	Menyala (3 detik)	Biru Muda	
	Hari-20	Menyala (7 detik)	Biru Kuning	
	Hari-25	Menyala (12 detik)	Biru Kuning	
	Hari-30	Menyala (10 detik)	Biru Kuning	
LS: KS = 50% : 50%	Hari-15	Menyala (2 detik)	Biru Muda	
	Hari-20	Menyala (6 detik)	Biru Muda	
	Hari-25	Menyala (10 detik)	Biru Kuning	
	Hari-30 Menyala (9 detik)		Biru Kuning	
LS: KS = 30% : 70%	Hari-15	Tidak Menyala	-	
	Hari-20	Menyala (5 detik)	Biru Muda	
	Hari-25	Menyala (8 detik)	Biru Muda	
	Hari-30	Menyala (7 detik)	Biru Kuning	

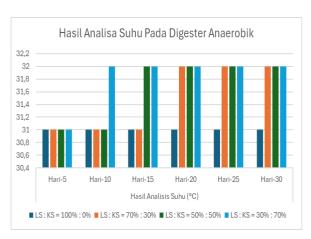
Hasil Pengukuran Suhu


Peneliti melakukan pengukuran suhu setiap 5 hari sekali yang dimulai dari hari ke-5 sampai hari ke-30 untuk mengetahui apakah proses fermentasi sesuai dengan range temperatur/suhu optimum yaitu 25-40°C. Dibawah ini adalah data hasil pengukuran suhu yang didapatkan dengan menggunakan termometer raksa.

Tabel 2. Hasil Pengukuran Suhu

Variasi	Hasil Analisis Suhu (°C)						
Substrat	Hari-	Hari-	Hari-	Hari-	Hari-	Hari-	
	5	10	15	20	25	30	
LS: KS							
= 100%:	31	31	31	31	31	31	
0%							
LS: KS							
= 70%:	31	31	31	32	32	32	
30%							
LS: KS							
= 50%:	31	31	32	32	32	32	
50%							
LS: KS							
= 30%:	31	32	32	32	32	32	
70%							

Pembahasan


Pengaruh Variasi Komposisi Substrat dan Waktu Fermentasi terhadap Suhu

Gambar 3. Grafik Pengaruh Komposisi Substrat Terhadap Waktu Uji Nyala Api

Berdasarkan Gambar 3. menunjukkan bahwa kualitas biogas terbaik dihasilkan dari variasi komposisi Limbah Sayur (LS) dan Kotoran Sapi (KS) 70%: 30% yang menghasilkan biogas dengan membuktikan biogas tersebut menyala dari hari-15 sampai hari-30 dengan waktu nyala api yang paling lama diantara variasi lainnya dan memiliki warna nyala api biru kuning secara konsisten dari hari-20 sampai hari-30. Sedangkan untuk kualitas biogas terendah dihasilkan dari variasi komposisi Limbah Sayur (LS) dan Kotoran Sapi (KS) 100%: 0% karena menyala pada hari-20 dan hari-25 saja dengan waktu nyala api yang paling sebentar diantara variasi lainnya dan warna nyala api biru terang. Berdasarkan penelitian [10] dapat dibuktikan bahwa dengan variasi komposisi Limbah Sayur (LS) dan Kotoran Sapi (KS) 70% : 30% adalah variasi terbaik dalam produksi

Pengaruh Variasi Komposisi Substrat dan Waktu Fermentasi terhadap Suhu

Gambar 4. Grafik Pengaruh Variasi Substrat dan Waktu Fermentasi terhadap Suhu

Pada Gambar 4. Menunjukkan hasil pengukuran suhu terhadap variasi substrat. Semua data menunjukkan suhu berada di 31 °C dan 32 °C. Pada hari ke-5 fermentasi semua variasi komposisi substrat menunjukkan suhu 31 °C. Kemudian pada hari ke-10 fermentasi menunjukkan kenaikan suhu menjadi 32 °C pada variasi LS:KS = 30%:70%, sedangkan pada variasi yang lain menunjukkan suhu yang sama seperti hari ke-5 fermentasi. Kemudian pada hari ke-15 menunjukkan kenaikan suhu 32 °C pada variasi LS:KS = 50%:50%, pada variasi lain masih sama seperti hari ke-10 fermentasi. Kemudian pada hari ke-20 menunjukkan kenaikan suhu pada variasi LS:KS = 70%:30%, pada variasi lain masih sama seperti fermentasi hari ke-15. Kemudian pada hari ke-25 dan ke-30 tidak terjadi perubahan suhu dari keempat variasi. Hal ini bisa dikatakan bahwa perubahan suhu yang terjadi yaitu dalam keadaan isothermal, karena suhu proses yang terjadi dalam reactor dengan keadaan konstan (Astika, 2023).

Kesimpulan

- 1. Hasil dari pengamatan membuktikan bahwa limbah sayur dari Pasar Kranggot Cilegon dapat diubah menjadi biogas sebagai alternatif energi terbarukan dan dapat menghasilkan gas metana yang dibuktikan dengan pengujian nyala api.
- Sekam padi terbukti memiliki pengaruh terhadap suhu optimum dalam proses pembuatan biogas, dapat dibuktikan dengan data hasil pengukuran suhu terhadap variasi substrat. Semua data menunjukkan suhu berada di 31°C dan 32°C yang dimana suhu optimum pembuatan biogas berkisar 25-40°C.
- 3. Hasil dari pengamatan membuktikan bahwa Kualitas biogas terbaik dihasilkan dari variasi komposisi Limbah Sayur (LS) dan Kotoran Sapi (KS) 70%: 30% yang menghasilkan biogas dengan membuktikan biogas tersebut menyala dari hari-15 sampai hari-30 dengan waktu nyala api selama 12 detik dan memiliki warna nyala api biru kuning secara konsisten dari hari-20 sampai hari-30

Ucapan Terima Kasih

Dalam penyusunan penelitian ini tidak terlepas dari dukungan berbagai pihak yang telah membantu dan membimbing baik yang bersifat moral maupun materil. Penulis mengucapkan terimakasih kepada:

- Bapak H.M. Juju Adhiwikarta, S.T, M.T. Selaku Dekan Teknik Universitas Al-Khairiyah yang telah memotivasi kami dalam pengerjaan penelitian.
- 2. Ibu Siti Hajir., S.T, M.T. Selaku Kaprodi Teknik Kimia yang telah membantu memberikan arahan serta pikiran kepada penulis.
- 3. Ibu Yulis Sutianingsih., S.T, M.T. Selaku pembimbing penelitian I yang telah meluangkan waktu serta memberikan arahan dan bimbingan

- kepada penulis selama berjalannya penelitian dari awal hingga akhir.
- 4. Bapak Muhammad Ihsan., M.Si. Selaku pembimbing penelitian II yang telah meluangkan waktu serta memberikan arahan dan bimbingan kepada penulis dalam penyusunan penelitian ini.
- 5. Kedua orang tua terkasih yang selalu memberikan dukungan, do'a yang selalu dilimpahkan kepada penulis.
- 6. Teman-teman seperjuangan yang telah membantu dalam hal ide dan gagasan meliputi penelitian penulis.

Daftar Pustaka

Pustaka yang berasal dari jurnal

- [1] T. A. D. d. R. Wibowo, "Fermentasi Anaerob dari Campuran Kotoran Ayam dan Kotoran Sapi dalam Proses Pembuatan Biogas," *Jurnal Kimia Unand*, pp. 113-118, 2013.
- [2] H. R. R. d. G. Fachry, "Penentuan Nilai Kalorifik yang Dihasilkan dari Proses Pembentukan Biogas," *Jurnal Teknik Kimia*, pp. 7-12, 2004.
- [3] A. L. G. R. A. S. A. W. Caraka Putra Bhakti, "Pelatihan dan pemanfaatansekam padi menjadi briket bioarangdi Desa Kemranggon, Kecamatan Susukan Kabupaten Banjarnegara," *Pelatihan dan pemanfaatan(Caraka Putra Bhakti)*, 2019.
- [4] C. a. P. C. o. R. H. A. a. S. f. C. C. Manufacture, "KOMPONEN KIMIA DAN FISIK ABU SEKAM PADI SEBAGAI SCM UNTUK," Jurnal Perennial, 5(1): 9-14, 2008.
- [5] Y. H. C. d. N. R. JAR, "Efektifitas Kombinasi Limbah Sayur dan Kotoran Sapi Sebagai Bahan Utama Pembuatan Biogas dalam Digester Anaerob," INSOLOGI (Jurnal Sains dan Teknologi) Vol. 2 No. 4, p. 719 – 729, 2023.

Pustaka yang berasal dari buku

- [6] E. L. A. H. F. A. M. P. R. A. P. M. Rizal Taufikurahman, "IMPLIKASI KENAIKAN HARGA MINYAK DUNIA BAGI PEREKONOMIAN INDONESIA," INDEF POLICY BRIEF, p. 3, 2022.
- [7] K. ESDM, Handbook of Energy & Economic Statistics of Indonesia 2023, Jakarta: Kepala

- Pusat Data dan Informasi Teknologi Energi dan Sumber Daya Mineral, 2023.
- [8] S. Azzahidah, "Biogas: Pengertian, Manfaat, Kelebihan, dan Kekurangannya," Megah Anugerah Energy, 2024.
- [9] F. B. Paimin, "Alat Pembuat Biogas dari Drum," Penebar Swadaya: Jakarta, 1995.
- [10 F. S. Tania, "Mengolah Sampah Organik Menjadi Biogas Melalui Anaerobik Digester," Zonaebt, 2023.
- [11] A. Astika, "Proses Termodinamika: Isotermal, Isobarik, Isokhorik, dan Adiabatik," *Sonara.id*, 2023.